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Abstract—When resurveying a seafloor area of interest 

during change detection operations, an automated method to 
match found bottom objects with objects detected in a previous 
survey allows the surveyor to quickly sort new objects from old. 
The change detection system developed at the Naval Research 
Laboratory contains modules for automatic object detection, 
feature matching using shadow outlining, scene matching using 
control-point matching, and visualization capabilities. This 
system was developed for sidescan sonar surveys using 
instrumentation such as the high-frequency Marine Sonic 
Technology sidescan sonar. In this paper, the authors describe 
modifications to the sidescan-based system required to perform 
change detection using Synthetic Aperture Sonar (SAS) bottom 
imagery. 

 
Index Terms—Acoustic signal detection, Computer aided 

analysis, Real time systems, Sonar signal processing. 
 

I. INTRODUCTION 
EAFLOOR change detection (figure 1) is accomplished by 
comparing high-resolution sidescan sonar imagery (SSI) 

collected sometime in the near past (“historical”) with recently 
collected SSI in an attempt to identify newly placed objects 
(“contacts”) that might pose a threat, such as explosive mines 
and Improvised Explosive Devices (IEDs). Any new contacts 
not successfully matched with historical ones are flagged for 
further investigation, typically using a Remotely Operated 
Vehicle (ROV) with a camera.  This form of change detection, 
performed both manually and automatically, has been shown 
to greatly reduce the time and resources needed to determine if 
harbors and routes for ship traffic are safe [1]. 

The imagery typically used for change detection is high-
frequency SSI with resolution of between 0.1-0.5 meters per 
pixel (m/pixel).  For example, the Klein 5000 sonar operates at 
a frequency of 450 kHz and has an across-track resolution of 
0.1 m/pixel.  The high-frequency Marine Sonic Technology 
sidescan sonar, commonly used on the Remote Environmental 
Monitoring Unit (REMUS) Autonomous Underwater Vehicle 
(AUV), operates at 900 kHz with a resolution of 0.586 
m/pixel.  At these frequencies and resolutions, it is possible to 
detect and classify bottom objects as possible threats, but not 
to identify the specific type of threat. 

Imagery can be generated from synthetic aperture sonar 
(SAS) with resolutions that can exceed 10 times that of SSI 
The resulting detail might support the identification of specific 
objects [2] thus improving the ability to perform change 

detection and threat neutralization.  The higher resolution is 
achieved when SAS ensonifies the same position on the 
seabed with multiple pings, which are then coherently 
reorganized. 

 

 
Fig. 1. Close up view of the same contact observed in the past (left) and 
present (right). Note the contact in the historical SSI (right) is not centered in 
the box. This is due to position error between historical SSI and recently 
collected SSI. 

 

  
Fig. 2. SSI (left) and SAS (right) of the same area.  The object circled in the 
SAS is the same as that centered in the SSI.  Note the SAS imagery is much 
lighter than the SSI, and shadows are less evident.  In addition, the SAS 
imagery appears to have considerably lower signal to noise ratio than the SSI, 
in this example. 

 
In May 2009, researchers at the Naval Research Laboratory 

(NRL) participated in a homeland defense Limited Objective 
Experiment (LOE) with the Naval Oceanographic Office 
(NAVOCEANO) and the Naval Oceanography Mine Warfare 
Command (NOMWC) to look for mines in the Corpus Christi 
harbor [3].  A few months prior to the LOE, operators used 
REMUS AUVs equipped with sidescan sonar systems to pre-
survey the harbor.  At the start of the LOE, inert mineshapes 
were placed in the ship channel to simulate a terrorist threat.  
During the LOE, operators resurveyed the harbor with both 
sidescan sonar (on REMUS) and SAS (on the Small Synthetic 
Aperture Minehunter AUV), shown in figure 2.  NOMWC, 
NAVOCEANO and NRL then analyzed the SSI and SAS to 
find the inert mineshapes. 
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This paper presents efforts to perform automated change 

detection between historical SSI (collected during the pre-
survey) and the new SAS imagery (collected during the 
Corpus Christi LOE) using the authors’ Automated Change 
Detection and Classification (ACDC) system. ACDC currently 
automates the change detection process with sophisticated 
algorithms operating on high-resolution SSI [4-9].  The 
authors first discuss briefly how their Automated Target 
Recognition (ATR) component of ACDC currently works with 
SSI.  They describe how, for a proof-of-concept test, they 
processed SAS into a format that could be input directly into 
the NRL ATR, by downsampling SAS and stretching its 
intensity range to mimic SSI.  They present preliminary results 
of the Corpus Christi LOE comparing how well the NRL ATR 
detected objects in the modified SAS imagery vs. SSI, and 
finally discuss how the ATR could be modified to operate on 
the original, full-resolution SAS imagery. 

II. NRL AUTOMATED TARGET RECOGNITION (ATR) 
Seafloor objects show up as bright spots (“brights”) and 

shadows in SSI.  If the shadow is on the side of the object 
furthest from nadir (the point directly below the sonar), then 
the object is proud on the seafloor and its height can be 
estimated from the length of its shadow and the height of the 
sonar above the seafloor.  The authors’ ATR algorithm detects 
mine-like objects, called “clutter”, by locating brights with 
adjacent shadows in SSI.  The algorithm rejects clutter that is 
outside a range of sizes consistent with known threats. 

SAS data can be processed into imagery that resembles SSI, 
with brights and shadows representing bottom objects.  
Experimental SAS processing initially performed by the Naval 
Surface Warfare Center - Panama City (NSWC-PC) produced 
imagery that does not represent the full potential of SAS.  As 
the NSWC-PC SAS algorithms improve, image quality is 
expected to improve.  In the meantime, this imagery displayed 
shadows that were not as dark as those typically seen in SSI, 
due to the method by which the multiple SAS pings were 
correlated.  The NRL ATR was designed to be triggered by 
sufficiently dark shadows with associated brights.  As a 
preliminary proof-of-concept during the Corpus Christi LOE, 
NRL applied standard image processing techniques to the SAS 
imagery (to darken the shadows) prior to running their ATR.  
This was the first opportunity NRL had to work with the 
NSWC-PC SAS imagery.  If this initial test were successful, 
then NRL could provide change detection results by the end of 
the LOE.  If not, then in a future effort, NRL would 
investigate more sophisticated image processing techniques 
and modify the ATR to correctly handle SAS imagery. 

The NRL ATR can operate in real-time as sonar data is 
collected and is the first component of the real-time version of 
ACDC (ACDC-RT).  Due to real-time processing demands, 
the ATR algorithm relies on a patented geospatial bitmap 
(GB) technique.  Simple bitmaps, with a depth of one bit per 
pixel, are binary structures in which bits are turned on (set = 1) 
or off (cleared = 0).  The index of each bit is unique and 
denotes its position relative to other bits in the bitmap.  The 

authors extended this concept to construct GBs in which every 
bit represents an object at some unique geospatial location.  A 
set bit indicates that some object of interest (in this case a 
bright or shadow pixel) exists at that location, accurate to 
within the resolution of the bitmap.  A cleared bit indicates the 
absence of any object of interest at that location.  Although a 
GB can be defined for an entire finite space, memory is only 
allocated (dynamically) when groups of spatially close bits are 
set, resulting in a compact data structure that supports very 
fast Boolean and morphological operations.  Thus, the GB 
structure is well-suited for real-time imagery operations. 

Across-track bright and shadow positions and lengths are 
stored in two GBs: one each for shadows and brights.  
Shadows and brights in a scan line are located by first 
adaptively obtaining a lower intensity threshold, imin, such that 
all samples of intensity less than imin are considered shadows.  
An upper intensity threshold, imax, is set such that all samples 
of intensity above imax are considered brights. 

An appropriate gamma shift converts image intensities to fit 
a normal distribution, such that imin and imax are set to the 
quartiles of the shifted (normal) distribution.  After imin and 
imax have been determined for scan lines with maximum 
intensity value > 128, the port and starboard halves of the scan 
lines are processed separately.  Each half of the scan line can 
be represented by a vector, X, of length N.  The following 
method is used to process shadows and brights for the 
starboard side; the port side is processed similarly. 

Two GBs of size 1xN are created, one for shadows and one 
for brights.  A different gamma adjustment, γ, based on an 
error approximation of the side-scan sonar parameters, is 
computed for position x within X, as shown in (1). 

 γ = e –β x / N  (1) 

β is based on the sonar parameters, such as time-varying 
gain.  As β approaches infinity, the gamma correction 
approaches 0 over a greater range of X and therefore has less 
affect on intensity thresholds. 

The bright and shadow thresholds Imin(x) and Imax(x) are 
defined in (2) and (3).  All pixels with intensity values above 
Imax(x) are considered brights, all with intensities below Imin(x) 
are considered shadows, and the corresponding bits in the 
bright and shadow GBs are set. 

 Imin(x) = imin(1-γ) (2) 
 Imax(x) = imax(1+γ) (3) 

Figure 3 illustrates how the intensity thresholds vary over x 
for a given γ.  For example, the closer a pixel is to the center 
of the scan, known as nadir (x = 0), the greater its intensity 
must be to be detected as a bright [7], and the lower its 
intensity must be to be detected as a shadow.  It is interesting 
to note that the two threshold curves do not diverge from their 
respective asymptotes (imin and imax) at the same rate as they 
approach nadir.  This is by design, because shadows are more 
detectable than brights in SSI [8] – [11].  In other words, a 
single shadow threshold value (imin) suffices for more values 
of x than a single bright threshold value (imax). 

 



#090601-025 3 
 

 
Fig. 3.  Intensity thresholds for brights and shadows. 

 
Finally, the bright and shadow geospatial bitmaps are 

examined from the edges of the scan lines toward the center 
(nadir) to detect runs of shadows followed by runs of brights.  
A circular lookup table is created to “window” several scan 
lines at a time.  This lookup table is populated with positions 
and run-lengths of shadows and brights.  The window 
information is used to determine if a series of scan-line 
detections comprise an object. Shadow length is one 
component in determining the object’s height, which is used to 
help determine whether the object is mine-like. 

III. ATR TEST METHODS 

A. Pre-processing SAS 
To prepare the SAS imagery for input to the ATR, as a 

proof-of-concept test, NRL first converted the original 16-bit 
SAS imagery to 8-bit.  The original imagery is stored in 
NAVOCEANO Unified Sonar Image Processing System 
(UNISIPS) files, in which one sample value occupies two 
bytes (with an intensity range of 0-65535).  Each 2-byte 
sample is converted to 1 byte (with an intensity range of 0-
255) by computing the actual intensity range of the original 
image and rescaling it to 0-255.  NRL then downsampled the 
imagery from the original 0.0235 meters per pixel (m/pixel) to 
0.4700 m/pixel by removing an appropriate number of pixels.  
This approximates the REMUS imagery resolution (0.586 
m/pixel).  Finally, to darken the shadows in the SAS imagery, 
NRL reduced the brightness by 10% and increased contrast by 
33%, which produced a range of intensities that approached 
that of the REMUS data (figure 4). 

 

  
Fig. 4. Downsampled SAS before (left) and after (right) darkening to emphas-
ize shadows (decreased brightness by 10%; increased contrast by 33%). 
 

B. Performing ATR on SSI and SAS 
NRL selected a section of the Corpus Christi harbor where 

both SAS imagery and SSI were collected during the LOE and 

the locations of 690 bottom objects had been determined 
manually by Navy operators.  NRL ran their ATR algorithm 
on both sets of imagery for this region, and determined 
whether or not each detection was correct (i.e., within 2 m of a 
manually called object).  The total number of correct 
detections and false detections were tabulated for each sonar 
type.  The number of missed detections was assumed to be 
690 minus the number of correct detections. 

IV. RESULTS 
Figure 5 and table 1 present ATR results using SSI and SAS 

imagery from the 2009 Corpus Christi LOE.  Detection was 
significantly better using SSI than SAS in this experiment.  Of 
690 seafloor objects identified manually by Navy operators, 
the NRL ATR correctly detected 601 (87%) using SSI and 182 
(26%) using SAS.  The ATR false detection rate (type I error) 
was 0.06 for SSI and 0.20 for SAS, and the missed detection 
rate (type II error) was 0.12 for SSI and 0.59 for SAS. 
 

 

 
Figure 5.  Comparison of correct detections (top) and false detections (bottom) 
for ATR performance with REMUS (black) and SAS (gray) imagery, over the 
same test area. 

TABLE I 
ATR PERFORMANCE WITH SSI VS. SAS DURING CORPUS CHRISTI LOE. 

SSI SAS 

 Present 
Not 

Present Present 
Not 

Present 
Detected 601 46 182 173 

Not detected 89 0 508 0 

Total 690 46 690 173 

SSI SAS 

α (Type I error) 0.06 0.20 

β (Type II error) 0.12 0.59 

1-β (Power of test) 0.88 0.41 

α = False positive rate = #false detections / total #cases 

β = False negative rate = #missed detections / total #cases 

V. CONCLUSIONS 
The authors’ objective was to use ACDC to perform 

automated change detection between SAS imagery (collected 
during the Corpus Christi LOE) and historical SSI (collected 
months prior to the LOE).  The authors first needed to 
determine whether the NRL ATR (the first component of 
ACDC) would perform satisfactorily on SAS data.  To test this 
in time for the Corpus Christi LOE, NRL reformatted the SAS 
data to approximate the resolution and intensity range of SSI 
for easy input to the ATR. 
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Unfortunately, the ATR performed much worse with the 

pre-processed SAS imagery than with SSI, by not detecting 
most (74%) of the bottom objects called manually by 
operators and reporting a very high number of false detections.  
While it is possible that this poor performance was due to 
information lost during preprocessing (i.e., downsampling the 
SAS data and scaling its image intensities), the authors believe 
ATR results would be greatly improved with better quality 
SAS imagery.  The SAS imagery produced by NSWC-PC 
during the LOE is experimental and has not yet reached its full 
potential (i.e., sharper imagery with greater detail, less noise, 
darker shadows and brighter brights). 

Given the poor ATR performance with this SAS imagery, 
NRL decided it was not feasible to perform automated change 
detection between historical SSI and new SAS imagery for 
this experiment.  However, NOMWC successfully performed 
manual change detection by visually comparing historical SSI 
with the newly collected SAS imagery.   

As NSWC-PC continues to improve their SAS processing 
techniques, NRL hopes to have access to better quality SAS 
imagery.  At that point, NRL plans to reengineer the ATR to 
better detect objects in SAS by modifying our gamma shift to 
handle softer shadows, and increasing the amount of data 
being buffered so the ATR accommodates the full resolution 
of SAS.  Once the ATR has successfully detected objects in 
SAS, NAVOCEANO and NRL can start testing ACDC with 
SAS imagery. 
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